A Comprehensive Evaluation of Feature Selection for Gait Recognition Using Smartwatches
نویسندگان
چکیده
Activity recognition that recognises who a user is by what they are doing at a specific point of time is attracting an enormous amount of attention. Whilst previous research in activity recognition has focused on wearable dedicated sensors (body worn sensors) or using a smartphone’s sensors (e.g. accelerometer and gyroscope), little attention is given to the use of wearable devices – which tend to be sensor-rich highly personal technologies. This paper presents a thorough analysis of the current state of the art in transparent and continuous authentication using acceleration and gyroscope sensors and an advanced feature selection approach to select the optimal features for each user. Two experiments are conducted; the first experiment used all the extracted features (i.e., 143 unique features) while (for comparison) a more selective set of only 30 features are used in the second experiment. The best results of the first experiment are average Euclidean distance scores of 0.55 and 1.41 for users’ intra acceleration and gyroscope signals respectively and 3.33 and 5.85 for users’ inter acceleration and gyroscope activities accordinglyproviding sufficient disparity in distance to suggest a strong classification performance. In comparison, the second experiment demonstrated stronger results when evaluated (at best the average Euclidean distance scores is 0.03 and 0.19 for users’ intra acceleration and gyroscope signals respectively and 1.65 and 1.1 for users’ inter acceleration and gyroscope activities). The findings demonstrate that the technology is sufficiently capable and the nature of the signals captured sufficiently discriminative to be useful in performing activity recognition. Moreover, the proposed feature selection approach could offer better results and reduce the computational overhead on digital devices.
منابع مشابه
A Database for Automatic Persian Speech Emotion Recognition: Collection, Processing and Evaluation
Abstract Recent developments in robotics automation have motivated researchers to improve the efficiency of interactive systems by making a natural man-machine interaction. Since speech is the most popular method of communication, recognizing human emotions from speech signal becomes a challenging research topic known as Speech Emotion Recognition (SER). In this study, we propose a Persian em...
متن کاملGait recognition without subject cooperation
The strength of gait, compared to other biometrics, is that it does not require cooperative subjects. In previous work gait recognition approaches were evaluated using a gallery set consisting of gait sequences of people under similar covariate conditions (e.g. clothing, surface, carrying, and view conditions). This evaluation procedure, however, implies that the gait data are collected in a co...
متن کاملFeature Selection for Gait Recognition without Subject Cooperation
The strength of gait, compared to other biometrics, is that it does not require cooperative subjects. Previoius gait recognition approaches were evaluated using a gallery set consisting of gait sequences of people under similar covariate conditions (i.e. clothing, surface, carrying, and view conditions). This evaluation procedure, however, implies that the gait data are collected in a cooperati...
متن کاملMental Arithmetic Task Recognition Using Effective Connectivity and Hierarchical Feature Selection From EEG Signals
Introduction: Mental arithmetic analysis based on Electroencephalogram (EEG) signal for monitoring the state of the user’s brain functioning can be helpful for understanding some psychological disorders such as attention deficit hyperactivity disorder, autism spectrum disorder, or dyscalculia where the difficulty in learning or understanding the arithmetic exists. Most mental arithmetic recogni...
متن کاملImproving of Feature Selection in Speech Emotion Recognition Based-on Hybrid Evolutionary Algorithms
One of the important issues in speech emotion recognizing is selecting of appropriate feature sets in order to improve the detection rate and classification accuracy. In last studies researchers tried to select the appropriate features for classification by using the selecting and reducing the space of features methods, such as the Fisher and PCA. In this research, a hybrid evolutionary algorit...
متن کامل